The project

Marine biofouling, the unwanted colonization of marine organisms on surfaces immersed in seawater has a huge economic and environmental impact in terms of maintenance requirements for marine structures, increased vessel fuel consumption, operating costs, greenhouse gas emissions and spread of non-indigenous species. The SEAFRONT project will aim to significantly advance the control of biofouling and reduce hydrodynamic drag by integrating multiple technology concepts such as surface structure, surface chemistry and bio-active/bio-based fouling control methodologies into one environmentally benign and drag-reducing solution for mobile and stationary maritime applications. In parallel, a combination of laboratory-based performance benchmarking and end-user field trials will be undertaken in order to develop an enhanced fundamental/mechanistic understanding of the coating-biofouling interaction, the impact of this on hydrodynamic drag and to inform technology development and down-selection of promising fouling control solutions. This project aims to facilitate a leap forward in reducing greenhouse gas emissions from marine transport and the conservation of the marine ecosystem by adopting a multidisciplinary and synergistic approach to fouling control.

 Consortium SEAFRONT

This photo was taken during the kick-off meeting on 16 and 17 January 2014.